Quantum information processing through quantum dots in slow-light photonic crystal waveguides

نویسندگان

  • C. W. Wong
  • R. Bose
چکیده

We propose a scheme to realize controlled phase-flip gate between two single photons through a single quantum dot (QD) in a slow-light photonic crystal (PhC) waveguide. Enhanced Purcell factor and large b-factor lead to high gate fidelity over broadband frequencies compared to cavity-assisted system. The excellent physical integration of this PhC waveguide system provides tremendous potential for large-scale quantum information processing. Then we generalize to a multi-atom controlled phase-flip gate based on waveguide system in Sagnac interferometer. Through the Sagnac interferometer, the single photon adds the phase-flip operation on the atomic state without changing the photonic state. The controlled phase-flip gate on the atoms can be successfully constructed with high fidelity in one step, even without detecting the photon. # 2008 Elsevier B.V. All rights reserved. PACS : 42.70.Qs; 03.67. a; 42.50.Ct

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Slow Light in Nanophotonic Materials From ‘Trapped Rainbows’ to Quantum Memories

We analyze and compare the salient features of slowlight propagation in a variety of nanophotonic structures, including metamaterial, plasmonic and photonic crystal waveguides. We discuss the possibility of stopping light in nanoplasmonic metamaterials, and coherently storing quantum information in semiconductor quantum dot ensembles. Keywords––slow light; metamaterals; plasmonics; photonic cry...

متن کامل

Implementation scheme for quantum controlled phase-flip gate through quantum dot in slow-light photonic crystal waveguide

We propose a scheme to realize controlled phase gate between two single photons through a single quantum dot in a slow-light photonic crystal waveguide. Enhanced Purcell factor and large -factor lead to high gate fidelity over broadband frequencies compared to cavity-assisted system. The excellent physical integration of this photonic crystal waveguide system provides tremendous potential for l...

متن کامل

Two mechanisms of disorder-induced localization in photonic-crystal waveguides

Unintentional but unavoidable fabrication imperfections in state-of-the-art photonic-crystal waveguides lead to the spontaneous formation of Anderson-localized modes thereby limiting slow-light propagation and its potential applications. On the other hand, disorder-induced cavities offer an approach to cavity-quantum electrodynamics and random lasing at the nanoscale. The key statistical parame...

متن کامل

Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide.

We present time-resolved spontaneous emission measurements of single quantum dots embedded in photonic crystal waveguides. Quantum dots that couple to a photonic crystal waveguide are found to decay up to 27 times faster than uncoupled quantum dots. From these measurements beta-factors of up to 0.89 are derived, and an unprecedented large bandwidth of 20 nm is demonstrated. This shows the promi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009